
LabVIEW , NI -DAQ , The Software is the Instrument , ComponentWorks™ , MITE ™, NI-VISA ™, NI-VXI ™, VirtualBench™ , and VXIpc ™ are trademarks of
National Instruments Corporation. Product and company names are trademarks or trade names of their respective companies.

321252A-01� © Copyright 1996 National Instruments Corp. All rights reserved. July 1996

USING YOUR NI-DAQ 4.9.0 SOFTWARE WITH
YOUR VXI-DATA ACQUISITION MODULE

Introduction
This note describes your options when using NI-DAQ version 4.9.0 with
your VXI-data acquisition (VXI-DAQ) module.

Note: The information in these release notes applies only to configurations
using National Instruments VXIbus controllers.

NI-DAQ 4.9.0 supports the following VXI-DAQ products :

• VXI-DIO-128

• VXI-MIO-64XE-10

• VXI-MIO-64E-1

on the following operating systems:

• Windows 3.1/3.11

• Windows 95

At this time, neither your printed nor online NI-DAQ 4.9.0
documentation describes the configuration and use of VXI-DAQ
products. This document is your primary source of software information.

2

Software Installation
A typical installation includes these National Instruments driver software
products:

• NI-VXI

• NI-VISA

• NI-DAQ

• VXIplug&play Instrument Driver and Soft Front Panels

and one or more of these National Instruments application software
packages and documentation:

• LabVIEW

• LabWindows /CVI

• ComponentWorks

• VirtualBench

Perform the following steps to install your software:

1. Install NI-VXI on your computer . See your NI-VXI documentation
for specific installation instructions. The necessary version number
will vary with your configuration; Table 1 lists the possible controller
and operating system combinations and the oldest version of NI-VXI
you can use to create VXI-DAQ applications.

Table 1. NI-VXI Version Options

Controller Win 3.1 Win 95

VXIpc-850 1.1 1.1

VXIpc-740 1.1 1.1

PCI-MXI-2 1.1 1.0

AT-MXI-2 1.0 1.0

AT-MXI-1 3.3 3.3

VXIpc-486, Model 500 Series 1.3 1.4

3

2. Verify that you already have NI-VISA 1.0 or later installed on your
computer:

a. Look for the VISA Interactive Control program in your VXIPnP
folder.

– If you find the program, run it and open the About... dialog
box to determine the NI-VISA version number.

b. If you don’t find the program, look in your \WINDOWS\SYSTEM
directory for VISA.DLL or VISA32.DLL .

– If you find one of these files and the file has a 1996 or
newer date, you have NI-VISA 1.0 or later .

If you don’t have NI-VISA 1.0 or later installed, install it at this time.
Refer to your NI-VISA documentation for specific instructions.
Contact National Instruments if you need the latest version of
NI-VISA.

3. Install your application software using the appropriate
documentation.

4. Install NI-DAQ version 4.9.0 on your computer , if it’s not already
installed. Use the diskettes that were included with your VXI-DAQ
hardware and your NI-DAQ release notes to install it.

If NI-DAQ is already installed, run the NI-DAQ Configuration
Utility (formerly WDAQCONF) and check the title bar for the version
number. If you have an earlier version than 4.9.0, replace it with
version 4.9.0. See your NI-DAQ release notes for installation
instructions.

5. Install your VXIplug&play Instrument Driver. Use the instructions in
the Setup Utility on the diskettes that were included with your
VXI-DAQ hardware.

Your software installation is now complete.

Configuration
After you have installed all your software, run the following
configuration programs to configure your VXIbus system with NI-DAQ:

• Choose the icon and run VXIINIT to initialize your VXIbus
controller . VXIINIT is not an interactive utility. To initialize your
VXIbus controller, you must run it each time your computer reboots.
You should place VXIINIT in your startup folder.

• Choose the icon and run the Resource Manager, RESMAN , to
initialize the VXIbus modules in your chassis . RESMAN is also not an

4

interactive utility. You must run it every time your chassis is reset or
turned on. RESMAN assigns resources to the VXIbus modules in your
chassis. Run RESMAN after you run VXIINIT .

• Choose the icon and run VXIEDIT to configure your VXIbus
controller . Follow the appropriate steps in the following sections to
configure your controller to use VXI -DAQ products.

• Choose the icon and run the NI-DAQ Configuration Utility to
configure your VXI -DAQ modules. More detailed information is in
the Configuring Your VXI-DAQ Module with NI-DAQ section later in
these release notes.

Configuring VXIpc-850 and VXIpc-740 Embedded Controllers
1. Launch VXIEDIT .

2. Choose the VXIpc Configuration Editor .

3. Select Load Configuration From File.

4. If you have a VXIpc-850 embedded controller, find
\NIVXI\TBL\VDAQ850.CFG and select it.

If you have a VXIpc-740 embedded controller, find
\NIVXI\TBL\VDAQ740.CFG and select it.

5. Click on Load.

6. You should see a message that your Configuration Restored
Successfully .

7. Choose the Logical Address Configuration Editor.

8. Set the VXI Shared RAM Size to Share All of System Memory
and click OK .

9. Select the Bus Configuration Editor.

10. Depending on the number of VXI-DIO-128 and VXI-MIO modules
in your system, choose a value for User Window Size from Table 2
and select that value in VXIEDIT . Click OK .

5

Table 2. User Window Size Options

Number of
VXI-DIO-128

Modules

Number of
VXI-MIO
Modules

User Window
Size Values

1 or more 0 64 KB

1 or more 1 128 KB

1 or more 2 or more 256 KB

0 1 64 KB

0 2 128 KB

0 3 or more 256 KB

11. Select Update Current Configuration. After updating the
EEPROM, return to the main menu.

12. Quit VXIEDIT and reboot your computer.

Configuring PCI-MXI-2 Controllers
1. Launch VXIEDIT .

2. Choose the PCI-MXI-2 Configuration Editor.

3. Select Load Configuration From File.

4. Select \NIVXI\TBL\VXIDAQ.CFG.

5. Click on Load.

6. You should see a message that your Configuration Restored
Successfully .

7. Choose the Logical Address Configuration Editor.

8. Set the VXI Shared RAM Size to Share All of System Memory
and click OK .

9. Select the Bus Configuration Editor.

10. Depending on the number of VXI-DIO-128 and VXI-MIO modules
you have, choose a value in the User Window Size column from
Table 2 and select that value in the Window Size control in the
PCI»User Window»Window Size section of VXIEDIT . Click OK .

11. Select Update Current Configuration. After updating the
EEPROM, return to the main menu.

12. Select the VXI-MXI-2 Configuration Editor for each VXI-MXI-2 in
your system by selecting a particular VXI-MXI-2 and clicking OK .

6

13. Set the Interlocked field to Enable and click OK . Repeat this step
for each VXI-MXI-2 in your system.

14. Quit VXIEDIT and reboot your computer. Then turn your VXIbus
chassis power off, then on, and run VXIINIT and RESMAN .

Configuring VXIpc-486 Model 500 Series Embedded Controllers
1. Launch VXIEDIT .

2. Choose the Configuration Editor .

3. Select the A16/A32 address space.

4. Set VXI Shared RAM (Byte Order) to MOT INT (Motorola and
Intel byte order) and click OK .

5. Set VXI Shared RAM (MB) to All, 0 .

6. Press the Save button.

7. Quit VXIEDIT and reboot your computer.

Configuring AT-MXI-2 and AT-MXI-1 Controllers
No additional configuration steps are necessary for these controllers.

Configuring the GPIB-VXI/C Controller
This release of NI-DAQ does not support the use of VXI-DAQ modules
with the GPIB-VXI/C controller.

Configuring Your VXI-DAQ Module with NI-DAQ
The NI-DAQ Configuration Utility identifies your VXI-DAQ module and
configures its various operating settings. Among these settings are:

• VXIbus logical address

Your VXIbus logical address is determined by the DIP switch on
your VXI-DAQ module. RESMAN reports your logical address as
part of its output.

• VXIbus interrupt level (VXI-MIO modules only)

• Either A24 or A32 address space (VXI-MIO modules only)

RESMAN reports the address space assigned to your module in the
Configuring Address Map portion of its output. The address space
assigned is the address space in which your VXI-DAQ module
requests memory.

• Amount of onboard RAM (VXI-MIO modules only)

7

In Windows 95, you must go through the Add New Hardware procedure
before your VXI-DAQ module will be visible to the NI-DAQ
Configuration Utility. Windows 3.x has no such requirement.

Select the A32 address space for your VXI-MIO modules unless you are
using a VXIpc-486 Model 500 Series controller in Windows 95; for the
VXIpc-486 Model 500 Series controller, select the A24 address space.

Your VXI-DAQ configuration is complete.

Programming Your VXI-DAQ Module
Current releases of your National Instruments software documentation do
not specify VXI-DAQ hardware VIs and functions. However, most of the
VIs and functions you need are already listed in the documentation for the
DAQ hardware that is functionally equivalent to your VXI-DAQ module.

VXI-MIO Series Modules
The VXI-MIO-64XE-10 is functionally equivalent to the
AT-MIO-16XE-10. Any VI or function valid for the AT-MIO-16XE-10
is also valid for the VXI-MIO-64XE-10. The same relationship exists
between the VXI-MIO-64E-1 and the AT-MIO-16E-1. The channel
numbering scheme for both VXI-MIO Series modules is identical to that
of the AT-MIO-64E-3. The few differences that do exist, such as onboard
memory, are discussed in the Common Questions section of this
document.

VXI-DIO-128 Module
The VXI-DIO-128 currently has no functionally equivalent DAQ
hardware. The following sections list the LabWindows/CVI functions and
LabVIEW VIs you will use to program your VXI-DIO-128.

Note: You cannot change the direction of the digital lines on the VXI-DIO-128.
Sixty-four of the lines are always input and 64 are always output.

8

LabWindows/CVI Functions
Use the following functions to program the VXI-DIO-128 module.

DIG_Prt_Config
• Ports 0–7 are always input ports and ports 8–15 are always output

ports.

• latchMode is not supported and must be set to 0.

• You must set Direction to input for ports 0–7 and to output for
ports 8–15.

DIG_In_Port
• When the software reads output ports , the returned data is simply the

last data written, and the returned status is the badChanDirError
warning.

DIG_Out_Port
• Ports must be 8–15.

DIG_Line_Config
• Lines in ports 0–7 are always input lines and lines in ports 8–15 are

always output lines.

• There are eight lines per port numbered 0–7.

• You must set Direction to input for lines in ports 0–7 and to output
for lines in ports 8–15.

DIG_In_Line
• When the software reads output lines, the returned data is simply the

last data written, and the returned status is the
badDirOnSomeLinesError warning.

DIG_Out_Line
• Ports must be 8–15.

9

Set_DAQ_Device_Info
The VXI-DIO-128 supports an adjustable threshold for the input ports.
The logical 0 to logical 1 transition can occur anywhere in the range of
-32.00 to +31.75 V in 250 mV steps. Set this threshold with the
Set_DAQ_Device_Info function as shown in the following example,
which sets the threshold of input port 3 to TTL level (1.5 V).

status = Set_DAQ_Device_Info(device,
ND_DIO128_SELECT_INPUT_PORT, 3);

status = Set_DAQ_Device_Info(device,
ND_DIO128_SET_PORT_THRESHOLD, 1500);

The first Set_DAQ_Device_Info call selects which input port threshold
to modify. The definitions for ND_DIO128_SELECT_INPUT_PORT and
ND_DIO128_SET_PORT_THRESHOLD are in the NIDAQCNS include
file. The value for ND_DIO128_SET_PORT_THRESHOLD is in millivolts.
The input port thresholds of input ports 0–7 are automatically initialized
to the TTL level (1.5 V) whenever the NI-DAQ driver is loaded. Any
changes made will endure only for the life of the program.

Get_DAQ_Device_Info
In addition to its other functions, you can use Get_DAQ_Device_Info to
obtain the current input port threshold as shown in the following example:

err = Set_DAQ_Device_Info (device,
ND_DIO128_SELECT_INPUT_PORT, 3);

err = Get_DAQ_Device_Info (device,
ND_DIO128_GET_PORT_THRESHOLD, &port3threshold);

The value returned will be in millivolts.

LabVIEW VIs
Use the following LabVIEW VIs—DIO Port Config, DIO Port Read, and
DIO Port Write—to program the VXI-DIO-128 module.

DIO Port Config
• Ports 0–7 are input ports and ports 8–15 are output ports.

• Every line within a port must have the same direction (for instance,
be all input or all output) .

• The physical port width is 8 bits. You can combine up to four
consecutive ports into a 32-bit port.

10

DIO Port Read
• When the software reads the output lines, the returned data is simply

the last data written, and the returned status is the
badDirOnSomeLinesError warning.

DIO Port Write
You can write only to ports 8–15.

Setting the Input Threshold
The only way to change the input logical 0 to logical 1 threshold is by
calling the Set_DAQ_Device_Info C language function. Use the
LabVIEW Call Library Node to call this function. Use the nidaq32.dll
for Windows 95, and the nidaq.dll for Windows 3.x. See the
Set_DAQ_Device_Info section earlier in this document for more
information on setting the input threshold.

Common Questions
1. When I attempt to save my configuration in the NI-DAQ

Configuration Utility, I receive a dialog box that says The device
is not responding to the selected IRQ levels . What does this mean?

If you followed the steps in the Installation and Configuration
sections of these release notes and you get this message, most likely
it means that NI-DAQ does not have kernel mode access to your
module. If you disable Auto Test (under the Options menu in the
Main window) or set VXI-IRQ to Disabled, you should be able to
save with no errors.

Additionally, it may mean that you have forgotten to run VXIINIT
or RESMAN . In Windows 3.1, the NI-DAQ Configuration Utility tells
you that your device is not responding to the selected base address
when you forget to run VXIINIT or RESMAN . In Windows 95, the
message says that your device is not responding to the selected IRQ
level(s).

2. How do I know my VXI-DAQ module is installed and working?

After following the installation and configuration steps, run the
NI-DAQ Configuration Utility. After opening the program, click on
the entry for your VXI-DAQ module. When the second window
appears, click on the Test menu and choose one of the available tests.
The configuration test verifies communication with the VXIbus
module and, if you have kernel mode access, confirms whether

11

VXIbus interrupts and DMA are working. The other tests are
interactive and test the A/D converter, the D/A converter, the digital
I/O lines, and the counter/timers. Additionally, if you installed the
VXIplug&play instrument driver, the Soft Front Panels included with
the instrument driver are also useful in verifying that your module is
working.

3. What is meant by kernel mode access and what do I need to know
about it?

NI-DAQ handles all interrupts in kernel mode. However, certain
resource limitations can prevent NI-DAQ from communicating with
your VXI-DAQ module in kernel mode. When NI-DAQ is denied
kernel mode access , it is unable to perform some buffered operations,
such as waveform capture. It can still perform immediate operations,
such as AI_VRead in LabWindows/CVI, or AI Single Scan and
timed, nonbuffered operations in LabVIEW. The VXI-DIO-128 does
not require kernel mode access and is completely functional without
it .

4. What are the resource limitations that deny NI-DAQ kernel
mode access?

Each VXIbus controller has a limited number of windows into the
VXIbus address space where your VXI-DAQ module resides.

• Each of the VXIpc-850, VXIpc-740, and PCI-MXI-2 controllers
has four of these windows. You have kernel mode access on up
to four modules simultaneously. Using any A16 devices will use
up one of your four windows. The actual number of VXI-DAQ
modules to which you have simultaneous kernel mode access
will vary on the VXIpc-486 Model 500 Series embedded
controller .

• On the AT-MXI-2 and AT-MXI-1 controllers, there are no
windows available for kernel mode access.

If you attempt an operation on a VXI-DAQ module that requires
NI-DAQ to communicate with your module at interrupt time, and
NI-DAQ does not have kernel mode access to the module, your
application will receive the deviceSupportError . See Question 5 for
more information.

12

5. Is there anything I can do about a kernel mode access problem?

Yes. If you have simply run out of windows, you can close the
window on one VXI-DAQ module and reopen it on another. You can
also use onboard memory.

Use this pair of functions to open and close a window:

short _stdcall forceVXIDAQWindowOpen (short
deviceNumber);

short _stdcall forceVXIDAQWindowClosed (short
deviceNumber);

Your board must be idle when you close its VISA window. There are
no LabVIEW VIs for these calls so you must use the Call Library
Node if you are using LabVIEW. Use the nidaq32.dll for
Windows 95, and the nidaq.dll for Windows 3.x. If you are using
LabWindows/CVI, follow this example:

short _stdcall forceVXIDAQWindowOpen (short
deviceNumber);

short _stdcall forceVXIDAQWindowClosed (short
deviceNumber);

void main ()

{

short err;

err = forceVXIDAQWindowClosed (5);

if (err == noError)

 printf("\nVISA Window successfully
closed for device number 5.");

err = forceVXIDAQWindowOpen (6);

if (err == noError)

err = Init_DA_Brds (6, &boardCode);

if (err == noError)

 printf("\nVISA Window successfully
opened for device number 6.");

}

Another way to solve a kernel mode access problem is to use your
onboard memory. Timed, buffered analog input (waveform capture)
without kernel mode access is possible only if you have onboard
memory.

Timed, buffered analog output (waveform generation) is possible
even when kernel mode access is denied. However, the iteration
count will be unavailable and the regeneration modes will not be

13

supported. You can use either host or onboard memory for your
waveform generation, even when NI-DAQ does not have kernel
mode access.

Timed, buffered counter/timer input is not available without kernel
mode access.

Only one operation at a time can use onboard memory. That is, you
can acquire analog input data into the onboard memory, but you
cannot simultaneously generate a waveform from data in that
onboard memory. Onboard memory on the VXI-MIO Series
modules is only supported in LabVIEW. See Question 6 for more
information about onboard memory.

6. How do I specify the use of onboard memory in my program?

First, you must tell NI-DAQ via the NI-DAQ Configuration Utility
that you have installed onboard memory. See the Installation chapter
of your VXI-DAQ user manual for more information. The onboard
memory is on the VXI-DAQ module itself, and not on the
VXIbus controller.

Select the amount of onboard memory you intend to use via the
Onboard Memory Size dialog box in the NI-DAQ Configuration
Utility. Select A32 address space for your module if your controller
allows it, also in the NI-DAQ Configuration Utility. After making
these changes in the NI-DAQ Configuration Utility , reset or turn
your VXIbus chassis off, then on, and run RESMAN .

Next, set your LabVIEW application to use onboard memory at run
time. For analog input , set the allocation mode control in the AI
Buffer Config VI to 3; allocate DSP Memory. For analog output,
set the allocate mode control in AO Buffer Config VI to 4; allocate
DSP Memory. Ignore the text referring to DSP Memory and the
AT-DSP2200 module.

A constraint is placed on analog input operations that use onboard
memory when kernel mode access is denied—you cannot acquire
more data than the buffer that you allocated in the onboard memory
can hold. For example, if your buffer is 1 ,000 scans in size, you can
acquire no more than 1,000 scans. Continuous acquisition is not
allowed.

14

7. What exactly does the VXI-DAQ configuration file (VXIDAQ.CFG ,
VDAQ850.CFG, VDAQ740.CFG) do to my VXIEDIT configuration?

For all controllers, the VXI-DAQ configuration file sets your
controller address space to A32, sets the Byte Order to
Non-Swapped , and sets Slave Write Posting to Enable. The
PCI-MXI-2 VXI-DAQ configuration file will also point retries
caused by CPU-MXI collisions towards the MXIbus, and set MXI
Auto Retry to disable. The VXIpc700 Series VXI-DAQ
configuration file will point retries caused by CPU-VXI collisions
toward the VXIbus and set VXI Auto Retry to Disable .

8. How do I use SCXI with my VXI-MIO module?

Simply follow the procedures outlined in your NI-DAQ
documentation for MIO E Series devices. Using SCXI with your
VXI-MIO module is no different than using SCXI with any other
MIO E Series device.

9. Are there any module features described in my VXI-DAQ user
manuals that are not supported in the NI-DAQ 4.9.0 release?

Yes. For the VXI-MIO Series modules, NI-DAQ 4.9.0 does not
support driving signals onto, or receiving signals from, the eight TTL
VXIbus trigger lines and the two ECL VXIbus trigger lines.

For the VXI-DIO-128 module, NI-DAQ 4.9.0 does not support Serial
Number EPROM or Temperature Sensor features.

10. When I attempt to use the regeneration modes for waveform
generation, why do I receive the -10004 (valueConflictError)
error?

Waveform regeneration modes (regeneration mode values 2 and 3
in the AO Buffer Write VI in LabVIEW and oldDataStop value 1
and partialTransferStop value 1 in WFM_DB_Config) are
supported on the VXI-MIO modules only when you use interrupts to
send the waveform data to the module. Since the default transfer
mode for waveform generation uses DMA, use the Set DAQ Device
Information VI in LabVIEW or the Set_DAQ_Device_Info
function in the C language interface to switch to using interrupts.
Also notice that if kernel mode access is denied, the regeneration
modes will never be available, since you can only use DMA in this
case.

15

11. I had just finished running a LabVIEW data acquisition VI that
used my VXI-DAQ module when I launched the NI-DAQ
Configuration Utility. The Configuration test on my VXI-DAQ
module informed me that the module was busy and that any tests
would interrupt the current data acquisition, even though the
LabVIEW VI had finished. Then the Configuration test
informed me that the module was not responding to the base
address, even though the Configuration test had passed on
previous occasions. The other tests in the NI-DAQ Configuration
Utility return the -10403 (deviceSupportError) error, even though
these tests have worked on previous occasions.

This behavior occurs when a second application attempts to use
NI-DAQ to communicate with a VXI-DAQ module in Windows 95
after another application has already done so and is still open.
NI-DAQ version 4.9.0 does not allow two applications to perform
operations on VXI-DAQ modules at the same time in Windows 95.
You will have to close the application that ran first (LabVIEW in the
question above), before launching the second application. This
behavior does not occur in Windows 3.1.

321252A-01
July 1996

	USING YOUR NI-DAQ 4.9.0 SOFTWARE WITH YOUR VXI-DATA ACQUISITION MODULE
	Introduction
	Software Installation
	Configuration
	Configuring VXIpc-850 and VXIpc-740 Embedded Controllers
	Configuring PCI -MXI -2 Controllers
	Configuring VXIpc-486 Model 500 Series Embedded Controllers
	Configuring AT-MXI-2 and AT-MXI-1 Controllers
	Configuring the GPIB-VXI/C Controller
	Configuring Your VXI-DAQ Module with NI-DAQ

	Programming Your VXI-DAQ Module
	VXI-MIO Series Modules
	VXI-DIO-128 Module
	LabWindows/CVI Functions
	DIG_Prt_Config
	DIG_In_Port
	DIG_Out_Port
	DIG_Line_Config
	DIG_In_Line
	DIG_Out_Line
	Set_DAQ_Device_Info
	Get_DAQ_Device_Info

	LabVIEW VIs
	DIO Port Config
	DIO Port Read
	DIO Port Write

	Setting the Input Threshold

	Common Questions
	Tables
	Table 1. NI-VXI Version Options
	Table 2. User Window Size Options

